Mixtures of Eigen Features for Real-Time Structure from Texture

نویسندگان

  • Tony Jebara
  • Kenneth B. Russell
  • Alex Pentland
چکیده

We describe a face modeling system which estimates complete facial structure and texture from a real-time video stream. The system begins with a face tracking algorithm which detects and stabilizes live facial images into a canonical 3D pose. The resulting canonical texture is then processed by a statistical model to lter imperfections and estimate unknown components such as missing pixels and underlying 3D structure. This statistical model is a soft mixture of eigenfeature selectors which span the 3D deformations and texture changes across a training set of laser scanned faces. An iterative algorithm is introduced for determining the dimensional partitioning of the eigenfeatures to maximize their generalization capability over a cross-validation set of data. The model's abilities to lter and estimate absent facial components are then demonstrated over incomplete 3D data. This ultimately allows the model to span known and regress unknown facial information from stabilized natural video sequences generated by a face tracking algorithm. The resulting continuous and dynamic estimation of the model's parameters over a video sequence generates a compact temporal description of the 3D deformations and texture changes of the face.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An effective method for eigen-problem solution of fluid-structure systems

Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...

متن کامل

Learning Appearance Based Models: Mixtures of Second Moment Experts

This paper describes a new technique for object recognition based on learning appearance models. The image is decomposed into local regions which are described by a new texture representation called “Generalized Second Moments” that are derived from the output of multiscale, multiorientation filter banks. Class-characteristic local texture features and their global composition is learned by a h...

متن کامل

A Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State

In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...

متن کامل

Comparison of Five 3D Surface Texture Synthesis Methods

1 Junyu Dong and Mike Chantler are with the Texture Lab, Heriot-Watt University, Edinburgh, Scotland([email protected]) Abstract We present and compare five approaches for synthesizing and relighting real 3D surface textures. We adapted Efros’s texture quilting method and combined it with five different relighting representations, comprising: a set of three photometric images; surface gradi...

متن کامل

Eigen-Texture Method: Appearance Compression and Synthesis Based on a 3D Model

ÐImage-based and model-based methods are two representative rendering methods for generating virtual images of objects from their real images. However, both methods still have several drawbacks when we attempt to apply them to mixed reality where we integrate virtual images with real background images. To overcome these difficulties, we propose a new method, which we refer to as the Eigen-Textu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998